skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maier, Christopher_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The genusPinushas wide geographical range and includes species that are the most economically valued among forest trees worldwide. Pine needle length varies greatly among species, but the effects of needle length on anatomy, function, and coordination and trade‐offs among traits are poorly understood. We examined variation in leaf morphological, anatomical, mechanical, chemical, and physiological characteristics among five southern pine species:Pinus echinata,Pinus elliottii,Pinus palustris,Pinus taeda, andPinus virginiana. We found that increasing needle length contributed to a trade‐off between the relative fractions of support versus photosynthetic tissue (mesophyll) across species. From the shortest (7 cm) to the longest (36 cm) needles, mechanical tissue fraction increased by 50%, whereas needle dry density decreased by 21%, revealing multiple adjustments to a greater need for mechanical support in longer needles. We also found a fourfold increase in leaf hydraulic conductance over the range of needle length across species, associated with weaker upward trends in stomatal conductance and photosynthetic capacity. Our results suggest that the leaf size strongly influences their anatomical traits, which, in turn, are reflected in leaf mechanical support and physiological capacity. 
    more » « less